Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Asuman Sunguroglu

Ankara University, Turkey

Title: Expression profile of cancer Stem Cell markers in Glioblastoma derived CD133 + and CD133- cells

Biography

Biography: Asuman Sunguroglu

Abstract

Background/Aim: Glioblastoma, known as Glioblastoma Multiforme (GBM), is the most common and aggressive type of brain tumours in adults and contains self-renewing,  tumorigenic cancer stem cells (CSCs) that can account for tumour initiation and acquisition of resistance to the given anti-GBM therapies. The neural stem cell marker CD133, known as prominin-1, has been widely used as a CSCs marker in GBM. Although, there is some controversy regarding tumour-initiating properties of CD133+ and CD133- GBM cells, a growing number of studies have revealed GBM initiating stem cell capability of CD133+ cells. Elucidation of the molecular characterization of GBM CSCs is essential for the development of novel targeted therapeutics for GBM. Therefore, we aimed to determine the expression levels of other potential CSC markers in CD133+ GBM CSCs.

 

Materials and Methods: Primary GBM cells were isolated from freshly obtained GBM tissue samples derived from ten individual patients. These cells were cultured with DMEM with high glucose including 1% Penicillin-Streptomycin and 10% fetal bovine serum. Then, CD133+ and CD133- cells were separated by MACS (Miltenyi) method from those GBM primary cells. The CD133+ selected and CD133- cell populations were collected in different tubes. Following RNA isolation from CD133+ and CD133- cells, cDNA synthesis was performed. mRNA expression levels of 88 genes were detected by Real Time Cancer Stem Cell PCR Array (Bio-Rad). The Student T test was used to identify statistically significant differences between groups. Differences were accepted to be statistically significant at p<0.05. Confocal microscopy was performed to examine the localization of CD38 and CD24 proteins in CD133+ GBM CSCs.

 

Results: Based on the results of PCR Array, we found that the mRNA levels of ABCG2, ALCAM, CD24, CD38, CD4, DDR1, EGF, ENG, ETFA, FGFR2, FLOT2, FZD7, GSK3B, ID1, IKBKB, ITGA2, ITGA4, ITGA6, ITGB1, JAG1, MAML1, MUC1, MYCN, NFKB1, NOTCH2, PLAT, PLAUR, POU5F1 and BMP7 were statistically different in CD133+ GBM CSCs when compared to expression of those in CD133- cells. Furthermore, we investigated protein levels of CD38 and CD24 in both CD133+ and CD133- cells and observed that protein expression of both CD38 and CD24 was more prominent in CD133+ GBM CSCs than in CD133- cells.

 

Conclusion: Our results suggest that in addition to the presence of CD133 expression GBM initiating cells have also the expression of different genes involved in distinct survival pathways, indicating tracing these possible candidates could be useful for characterization of CD133+ GBM stem cells. This research has been supported by The Scientific and Technological Research Council of Turkey (No: 114S189).