Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Christopher A Bradley

Christopher A Bradley

Lattice Biologics, USA

Title: Characterization of extracellular matrix-based gels as a tissue engineering platform for regenerative medicine

Biography

Biography: Christopher A Bradley

Abstract

The extracellular matrix consists of structural and functional molecules secreted by the resident cells. The 3-dimensional organization and composition of an ECM is distinctive for each tissue type. Solubilized gel-forming ECM could potentially be used to develop products such as 3D culture substrates, growth factor delivery vehicles, or scaffolds that promote tissue regeneration. One goal of ours is to design a 100% allograft custom-fabricated human ECM-derived 3D microenvironment that mimics the biological properties of native ECM. Toward this goal, we evaluated the biochemical and functional characteristics of ECM isolated from human placenta, adipose, and cadaveric muscle tissues. In addition, we compared the properties of muscle-derived ECM isolated from young versus old donors. Proteomic analysis showed the presence of proteins involved in matrix remodeling, angiogenesis, cell growth and differentiation. ECM protein variability largely depended on tissue type and donor age. Regardless of tissue origin, ECM-based 3D gels affected cell morphology by reducing cell spreading. Differentiation of adipose-derived stem cells subjected to ECM sourced from various tissues showed no effect on adipogenic ADSC differentiation. Contrastingly, we found that the presence of young muscle ECM augmented chondrogenic ADSC differentiation, while old muscle ECM favored osteogenic ADSC differentiation. In summary, tissue- and age-related properties of ECM should be considered in developing 3D culture models for basic and translational research.