Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Raphael Gorodetsky

Raphael Gorodetsky

Hadassah-Hebrew University Medical Center, Israel

Title: Isolation of highly potent expanded human placental stromal cells (hPSC) and their application for regenerative medicine and treatment of acute lethal radiation syndrome

Biography

Biography: Raphael Gorodetsky

Abstract

We have developed highly efficient protocols for the isolation and expansion of vast numbers of potent stromal cell (hPSC) populations from selected layers of full term human placentas. The isolated hPSC could be expanded to high cell numbers, to be stored for further use. IM delivered hPSC were well tolerated as allogeneic or trans-species implants and resided with minimal rejection in the implanted muscle for many weeks before their full clearance. IM administration of hPSC in a mouse model of lethal acute radiation syndrome (ARS) following irradiation by ~8Gy dramatically elevated the survival of the mice form as low as ~25-30% to ~100% with enhancement of regeneration of the hematopoietic system. The hPSC activation by host systemic stress signals resulted in the secretion of a wide range of human-derived cytokines and growth factors into the circulation with boosting of bone marrow and spleen derived hematopoietic progenitor cells. This shed light on the mechanism of action of the potent hPSC. Our results suggest that these cells could be used as an effective allogeneic cell therapy for severely depleted hematopoietic system aside from mitigating ARS. IM treatment with hPSC also showed very promising preliminary results with other disease models, such as inflammatory bowel disease (IBD) and progressive phases of the EAE model of multiple sclerosis (MS). These results suggest that the hPSC may be highly effective as allogeneic cell treatment of different degenerative and autoimmune diseases by boosting regenerative processes, modulating inflammation and stimulating stem cells proliferation in damaged tissues.